
siliconsystems.at1Python Programming Manual

1. Introduction
The royalty free Python drivers represent a proprietary interface specifically developed for silicon systems devices. This document provides an expla-
nation of the functions and methods available to application developers. Any software code examples given in this document are for information only
and free to use in custom applications.
Python 3.2 and above (32-Bit and 64-Bit) for Microsoft® Windows™, Linux®, Raspberry Pi and Android™ is supported. It is advisable to always utilize the
most recent version of the driver for the best compatibility and performance. All drivers can be downloaded from http://siliconsystems.at.
If the DHCP-assigned IP address of a device is not known, the royalty free silicon systems Device Manager can be used to find all devices in the local
area network. In addition, the software shows various properties, the health status and calibration validity of each device. It can be downloaded from
http://siliconsystems.at/support.php?download.

2. Common Device Functionality
The functions provided by the silicon systems driver package can be divided into two subsets: device-specific functions (e.g. reading the temperature
of temperature monitor device) and common functions (e.g. retrieving the status of a device or finding available devices in the local area network). In
this section the latter functions are explained.

2.1. Loading the Driver
Before any methods provided by the driver class can be utilized, the package needs to be imported. The appropriate dynamic link library (32 or 64 bits)
located in folder lib is automatically loaded during import.

>>> from siliconsystems import *

2.2. Get Driver Information
The method driver can be used to obtain driver information. It does not expect any arguments and returns a named tuple with the following fields:
manufacturer (manufacturing company), version (driver version) or release (driver release date, type datetime.date).
In the following example this information is requested and the output might be as follows.

>>> driver = Device.driver()
>>> driver
Driver(manufacturer='silicon systems', version='1.8.3', release=datetime.date(2016, 12, 21))

2.3. Configure Network Settings
Each device has the default IP address 192.168.1.1, the subnet mask 255.255.255.0, the gateway 0.0.0.0 and DHCP auto-configuration is enabled. If
the name of the device or the network settings of a device shall be modified, e.g. DHCP auto-configuration needs to be disabled, method configure may
be used. Apart from the required serial number of the device, the device name (up to 64 characters), the DHCP status (either Device.DHCP_ENABLED
or Device.DHCP_DISABLED), the host IP address, the subnet mask and the gateway IP address need to be specified. In order to restore the default
configuration, method configure can be called with the serial number only. The device needs to reside in the local area network (LAN) to be able to
receive UDP broadcast datagrams.
In the following example for device with serial number 0x4704220B the device name is set to 'combustor monitor', DHCP auto-configuration is
disabled, the host IP address is set to 192.168.100.20, the subnet mask is set to 255.255.255.0 and the gateway IP address is not utilized and set to
0.0.0.0. If the device is only accessed from within the local area network, the gateway is not required to be configured.

>>> Device.configure(0x4704220B, 'combustor monitor', Device.DHCP_DISABLED, '192.168.100.20',
'255.255.255.0', '0.0.0.0')

Below the configuration of the device with serial number 0x4704220B is reset.

>>> Device.configure(0x4704220B)

Python Programming Manual

siliconsystems.at2Python Programming Manual

2.4. Finding Devices in the Local Area Network
If the IP address of the desired silicon systems devices are unknown, in particular, when the IP addresses are automatically assigned by a DHCP
server, method find may be utilized. If the method is called without arguments, a vector containing all devices in the local area network is returned.
The default time-out is 1000 ms and cannot be modified.

>>> device_list = Device.find()

The return value is a set of Device objects and, if e.g. two devices are found, might be as the follows.

>>> device_list
{<siliconsystems.Device.Device object at 0x01600CB0>, <siliconsystems.Device.Device object at 0x01600950>}

The number of devices can be determined with the len function.

>>> len(device_list)
2

If only the device with a certain serial number shall be looked up, method find can be called with one argument representing the serial number (un-
signed integer). It returns the Device object, if successful.

>>> device = Device.find(0x4723BDF3)
>>> device
<siliconsystems.Device.Device object at 0x01EE7890>

If more devices shall be looked up at the same time, a set containing multiple serial numbers can be passed to the method. It returns a tuple containing
serial numbers and device objects.

>>> device_list = Device.find({0x4723BDF3, 0x4723BDC2})
>>> device_list
{1193524674: <siliconsystems.Device.Device object at 0x01ECD770>, 1193524723: <siliconsystems.Device.Device
object at 0x01FBE0D0>}

2.5. Creating a Device Object
As described in the previous paragraph, method find returns a Device object or a list thereof, however a Device object can additionally be created
manually if the IP address or the hostname is known. This avoids the invocation of method find.
In the following example the IP address is passed as a string and the return value might be as follows.

>>> device = Device('192.168.1.100')
>>> device
<siliconsystems.Device.Device object at 0x00148AB0>

If the DNS server in the LAN is able to resolve hostnames referring to local IP addresses, the hostname can be utilized instead of the IP address when
creating a Device object.

>>> device = Device('VI01-472DA49F')

A Device object can also be created by passing an IP address of type ipaddress.IPv4Address. This requires the import of package ipaddress.

>>> import ipaddress
>>> address = ipaddress.IPv4Address('192.168.1.100')
>>> address
IPv4Address('192.168.1.100')
>>> device = Device(address)

In addition the hexadecimal representation of an IP address can be utilized to create a Device object.

>>> device = Device(0xC0A80164)

The copy constructor of class Device can be utilized to either duplicate an object or to create a derived object. This can particularly be useful when a
derived object shall be created from a Device object returned by method find.
In the following example a VI01 object is created from a Device object.

siliconsystems.at3Python Programming Manual

>>> device = Device.find(0x472DA49F)
>>> vi01 = VI01(device)
>>> vi01
<siliconsystems.VI01.VI01 object at 0x00F4D550>

2.6. Get Device IP Address
In order to get the address of a Device object method address is called without arguments. It returns a value of type ipaddress.IPv4Address.

>>> device = Device('192.168.1.100')
>>> device.address()
IPv4Address('192.168.1.100')

2.7. Set Device IP Address
The IP address of a Device object or any derived instance can also be modified by calling method address and passing the new IP address. Like for
the creation of a Device object, several argument types may be utilized: the IP address as a string (e.g. '192.168.1.100'), the host name (e.g. 'VI01-
472DA49F'), an ipaddress.IPv4Address type IP address or the hexadecimal representation of an IP address (e.g. 0x472DA49F).
In the following example only the first option is illustrated.

>>> device.address('192.168.1.100')

2.8. Get Device Time-out
When a command or request is sent to a device, a confirmation or response is expected within a certain time. If no response was received, a time-out
error occurs. This maximum waiting time is determined by the time-out value which is 1000 ms by default and can be read out or set (in ms) with the
aid of method timeout being called without arguments.
In the following example the current value is read out and the output might be as follows.

>>> device = Device('192.168.1.100')
>>> device.timeout()
1000

2.9. Set Device Time-out
In order to modify the time-out, the new value is passed to method timeout. A value of at least 1 ms is expected. In general, values lower than 100 ms
are not recommended.
In the following example the time-out is set to 100 ms.

>>> device = Device('192.168.1.100')
>>> device.timeout(100)

2.10. Reset Device
Any device can be reset with method reset. The effect is the same as disconnecting and reconnecting the device from the Power over Ethernet (PoE)
switch. This may be helpful when the network is being reconfigured (assignment of fixed IP addresses, etc.).
The method does not expect any arguments and is utilized as demonstrated below.

>>> device = Device('192.168.1.100')
>>> device.reset()

After the device is reset it takes several seconds until it reinitializes itself and gets a new IP address assigned by the DHCP server (if applicable). Until
then the device cannot be accessed.

2.11. Acquisition of Device Information
With method info a variety of information can be requested from the device. The method does not expect any arguments and returns a named tuple
Device.Info with the following fields: model (device model), description (functionality description), manufacturer (manufacturing company), serial
(serial number), revision (hardware revision), cpu (CPU type), frequency (CPU frequency, in Hz), memory (random-access memory, in Bytes), network
(network adapter), version (firmware version), release (firmware release date, datetime.date), calibration (calibration date, datetime.date), expiration
(expiration of calibration date, datetime.date), uptime reset (time elapsed since reset or power on, in seconds), uptime total (total uptime, in seconds),
cycles (number of power or reset cycles), eth_host (Ethernet address), ip_host (IP address, ipaddress.IPv4Address), ip_subnet_mask (subnet mask,

siliconsystems.at4Python Programming Manual

ipaddress.IPv4Address), ip_gateway (gateway IP address, ipaddress.IPv4Address), dhcp (DHCP status, either Device.DHCP_ENABLED or Device.
DHCP_DISABLED), hostname (hostname for DNS look-up), domain (domain name), name (device name), tag (one-time programmable device tag).
In the following example this information is requested from the device and the output might be as follows.

>>> device = Device('192.168.1.100')
>>> info = device.info()
>>> info
Info(model='TMP02', description='Quad RTD Monitor', manufacturer='silicon systems', serial=1193524723,
revision='C', cpu='ATmega644A', frequency=20000000, memory=4096, network='CP2200', version='1.2.1',
release=datetime.date(2015, 10, 30), calibration=datetime.date(2016, 3, 8), expiration=datetime.date(2017,
3, 8), uptime_reset=16146, uptime_total=16146, cycles=45, eth_host='00:0B:3C:23:BD:F3',
ip_host=IPv4Address('192.168.1.100'), ip_subnet_mask=IPv4Address('255.255.255.0'),
ip_gateway=IPv4Address('192.168.1.1'), dhcp=0, hostname='TMP02-4723BDF3', domain='siliconsystems.at')

If the calibration or expiration of calibration dates is not applicable to the requested device, these fields are set to None. The fields of the named tuple
Device.Info can be accessed using dot notation. In the following example the manufacturer field is retrieved.

>>> info.manufacturer
'silicon systems'

2.12. Acquisition of Device Status
Every device continuously monitors several parameters like supply voltages or the board temperature in order to ensure proper operation within speci-
fied conditions. These parameters can be retrieved with method status which does not expect any arguments and returns the named tuple Device.
Status with two fields property and ok. Field property is a dictionary with pairs of symbol name and Device.Property. The named tuple Device.Property
will be explained later on.
In the next example the status is requested from the device and the output might be as follows.

>>> device = Device('192.168.1.100')
>>> status = device.status()
>>> status.property
{'VREF': Property(symbol='VREF', description='Reference Voltage', unit='V', typical_value=5.0,
min_value=4.800000190734863, max_value=5.199999809265137, value=5.056250095367432), 'VCC':
Property(symbol='VCC', description='Positive Analog Supply Voltage', unit='V', typical_value=15.0,
min_value=14.0, max_value=16.0, value=14.490629196166992), 'VDD': Property(symbol='VDD',
description='Digital Supply Voltage', unit='V', typical_value=3.299999952316284,
min_value=3.0999999046325684, max_value=3.5, value=3.3423349857330322), 'VEE': Property(symbol='VEE',
description='Negative Analog Supply Voltage', unit='V', typical_value=-15.0, min_value=-16.0,
max_value=-14.0, value=-14.678053855895996), 'T': Property(symbol='T',
description='Board Temperature', unit='K', typical_value=nan, min_value=273.1499938964844,
max_value=343.1499938964844, value=310.8374938964844)}

The named tuple Device.Property has the following fields: symbol (symbol name), description (description of the parameter), unit (SI unit), typi-
cal_value (typical or nominal value, math.nan if not applicable), min_value (minimum value, math.nan if not applicable), max_value (maximum value,
math.nan if not applicable), value (current value).
In the following example the current board temperature (symbol name 'T', in K) is retrieved. The return value might be as follows.

>>> status.property['T'].value
310.8374938964844

The ok flag indicates if all parameters are within their limits.

>>> status.ok
1

2.13. Burn Tag
Every device can store a non-volatile tag (up to 64 characters) which is one-time programmable. With method burn this tag can be programmed by
the user and read out with method info.
In the following example the tag of the device at IP address 192.168.1.100 is set to 'dev_123'.

>>> device = Device('192.168.1.100')
>>> device.burn('dev_123')

siliconsystems.at5Python Programming Manual

3. CI01 Octal Current Monitor
The CI01 device is a versatile and easy-to-use voltage monitor. With eight inputs, it can be used with any industrial transducer with the current output
ranging from 4 to 20 mA. The ultra-low noise, the high resolution and the outstanding accuracy make it ideal for industrial applications as well as for
scientific experiments. The channels are multiplexed, amplified, conditioned and sampled by the high-performance 24-Bit delta-sigma A/D converter.

3.1. Set Sampling Frequency
The sampling frequency of the A/D converter can be set with the aid of method frequency. All eight channels are sampled one after the other at the
specified rate. The method expects one argument representing the sampling frequency. Valid values are CI01.FREQUENCY_6, CI01.FREQUENCY_12,
CI01.FREQUENCY_25, CI01.FREQUENCY_50, CI01.FREQUENCY_100, CI01.FREQUENCY_200, CI01.FREQUENCY_400, CI01.FREQUENCY_800, CI01.
FREQUENCY_1500 and CI01.FREQUENCY_3000 representing frequencies 6, 12, 25, 50, 100, 200, 400, 800, 1500 and 3000 Hz. By default the sampling
frequency is 6 Hz to ensure lowest noise suitable for most applications.
This is illustrated in the following example where the frequency is set to 200 Hz.

>>> ci01 = CI01('192.168.1.103')
>>> ci01.frequency(CI01.FREQUENCY_200)

The sampling rate should not be set higher than necessary in order to keep the measurement noise as low as possible. Please refer to the data sheet
for more details.

3.2. Measure Current
Method measure is utilized to acquire one or more samples from one or more channels (in A). Various call configurations do exist to suit the demands.
If a single sample of all eight channels shall be acquired the method is called without arguments and returns a dictionary with pairs of channel number
and current.
This is illustrated below and the return value might be as follows.

>>> ci01 = CI01('192.168.1.103')
>>> current = ci01.measure()
>>> current
{1: 0.014688492450667919, 2: 0.008467233772172334, 3: 0.01924146861722546, 4: 0.008741941040070682, 5:
0.01702027590326083, 6: 0.0073159732805764405, 7: 0.004703324210103526, 8: 0.007299539533897747}

If only one channel is to be sampled, its number (from 1 to 8) is passed to the method.
In the following example channel 2 is sampled and the return value might be as follows.

>>> ci01 = CI01('192.168.1.103')
>>> current = ci01.measure(2)
>>> current
0.011133613723794625

If more than one channel shall be sampled a set with the channel numbers must be passed to method measure. A dictionary with pairs of channel
number and current is returned.
In the following example channels 1, 3 and 8 are sampled and the return value might be as follows.

>>> ci01 = CI01('192.168.1.103')
>>> current = ci01.measure({1, 3, 8})
>>> current
{1: 0.014688492450667919, 3: 0.01924146861722546, 8: 0.007299539533897747}

If more than one samples shall be acquired from one channel the method expects three arguments: the channel number, the number of samples (from
1 to 106) and the sampling frequency (from 6 Hz to the sampling frequency configured with method frequency). A list of samples is returned.
In the next example at first the sampling frequency is set to 200 Hz and after that 10 samples from channel 4 are acquired at 180 Hz. The return value
might be as follows.

>>> ci01 = CI01('192.168.1.103')
>>> ci01.frequency(CI01.FREQUENCY_200)
>>> current = ci01.measure(4, 10, 180)
>>> current
[0.014813688852808383, 0.014141591359651694, 0.011439864328871372, 0.007602226459165596,
0.005313371677419349, 0.017531524444149536, 0.005991667180959519, 0.012665059325667024, 0.01420250009021956]

siliconsystems.at6Python Programming Manual

Moreover the acquisition of several samples from several channels is possible. The expected arguments are similar to the previous call configuration:
a set with the channel numbers, the number of samples (from 1 to 106) and the sampling frequency (from 6 Hz to the sampling frequency configured
with method frequency). A list of dictionaries with pairs of channel number and current is returned.
In the next example the sampling frequency is set to 200 Hz and 8 samples from channels 3 and 6 are acquired at 180 Hz. The return value might be
as follows.

>>> ci01 = CI01('192.168.1.103')
>>> ci01.frequency(CI01.FREQUENCY_200)
>>> current = ci01.measure({3, 6}, 8, 180)
>>> current
[{3: 0.014724013081174945, 6: 0.01932148054104206}, {3: 0.009221456353032407, 6: 0.015095112248494398},
{3: 0.014060855333229866, 6: 0.016143454740056365}, {3: 0.01713786660365572, 6: 0.011774127549697115}, {3:
0.014489086496272728, 6: 0.015855569907573717}, {3: 0.013395149652840622, 6: 0.0047748795913606715}, {3:
0.008214855323716396, 6: 0.01003909355816714}]

Indexing the list and the containing dictionaries is used to gather a specific sample. Note that indexing of lists is zero-based.
The example below shows how to retrieve sample 5 of channel 3 (compare to previous example).

>>> current[5 - 1][3]
0.014489086496272728

3.3. Stop Measurement
If method measure shall be terminated, method stop can be called, which is typically done from another thread or different computer.
The method does not expect any arguments and is utilized as demonstrated below.

>>> ci01 = CI01('192.168.1.103')
>>> ci01.stop()

4. CNT01 Quad Quadrature Encoder
The CNT01 device is a versatile and easy-to-use quad absolute counter and quadrature encoder. Every counter supports the up/down counting mode
to detect impulses of an arbitrary clock source as well as the quadrature encoder mode which is usually utilized to count the revolutions per minute
of a spinning shaft or motor.

4.1. Set Counting Mode
In order to change the counting mode of one or more channels method mode is called. The following counting modes are supported: CNT01.MODE_
NORMAL (normal, direction and clock signals), CNT01.MODE_QUADRATURE_1X (1x quadrature encoder), CNT01.MODE_QUADRATURE_2X (2x
quadrature encoder) and CNT01.MODE_QUADRATURE_4X (4x quadrature encoder). Refer to the data sheet for more information. Various call configu-
rations do exist to suit the demands. If the counting mode of all channels shall be updated only the counting mode is passed to the method.
In the following example all channels are configured for normal counting mode.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.mode(CNT01.MODE_NORMAL)

If the counting mode of only one channel is to be changed method mode is called with two arguments: the channel number (from 1 to 4) and the
counting mode.
In the next example channel 2 is configured for 2x quadrature encoder counting.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.mode(2, CNT01.MODE_QUADRATURE_2X)

Additionally method mode can be utilized to configure several channels. In that case the method expects a set with the channel numbers as the first
and the counting mode as the second argument.
Below channels 2 and 3 are configured for 4x quadrature encoder counting.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.mode({2, 3}, CNT01.MODE_QUADRATURE_4X)

Moreover method mode is able to configure several channels for different counting modes at the same time. A dictionary with pairs of channel number
and mode is passed to the method.

siliconsystems.at7Python Programming Manual

In the following example channels 1, 2 and 4 are configured for normal, 1x quadrature encoder and 4x quadrature encoder counting.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.mode({1: CNT01.MODE_NORMAL, 2: CNT01.MODE_QUADRATURE_1X, 4: CNT01.MODE_QUADRATURE_4X})

4.2. Read from Channels
Method read is utilized to read the counter value of one or more channels. Various call configurations do exist to suit the demands. If the counter
values of all four channels shall be acquired, method read is called without arguments and returns the named tuple CNT01.Counter with two fields
value and time. The type of field value is a dictionary with pairs of channel number and counter value and field time is a relative timestamp (in ms)
which can be utilized for precise frequency or rotational speed measurements.
This is demonstrated in the next example and the return value might be as follows.

>>> cnt01 = CNT01('192.168.1.100')
>>> counter = cnt01.read()
>>> counter.value
{1: 1235, 2: 231, 3: 15689, 4: 0}
>>> counter.time
78018

If only the counter value of one channel is to be read out, the channel number (from 1 to 4) is passed to the method.
Channel 4 is read out as shown in the example below and the return value might be as follows.

>>> cnt01 = CNT01('192.168.1.100')
>>> counter = cnt01.read(4)
>>> counter.value
18942
>>> counter.time
12097

If more than one channel shall be read out a set with the channel numbers must be passed to method read.
In the following example channels 1 and 3 are sampled and the return value might be as follows.

>>> cnt01 = CNT01('192.168.1.100')
>>> counter = cnt01.read({1, 3})
>>> counter.value
{1: 42176, 3: 91574}
>>> counter.time
254894

4.3. Clear Channels
Method clear is utilized to reset the counter value of one or more channels to zero. If the counter values of all four channels shall be reset, method
clear is called without arguments which is demonstrated in the example below.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.clear()

If the counter value of only one channel is to be reset, the channel number (from 1 to 4) is passed to method clear.
In the next example channel 1 is reset.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.clear(1)

Additionally, method clear can be utilized to reset the counter value of several channels to zero. In that case a set with the channel numbers is passed
to the method.
In the example below channels 2 and 3 are reset.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.clear({2, 3})

siliconsystems.at8Python Programming Manual

4.4. Disable Channels
In order to disable one or more channels method disable is utilized. If all four channels shall be disabled, the method is called without arguments
which is illustrated in the example below.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.disable()

If only one channel shall be disabled the channel number (from 1 to 4) is passed to method disable.
In the next example channel 2 is disabled.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.disable(2)

Additionally, method disable can be utilized to disable several channels. A set with the channel numbers is passed to the method.
In the example below channels 3 and 4 are disabled.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.disable({3, 4})

4.5. Enable Channels
One or more channels are enabled by the use of method enable. If all four channels shall be enabled, the method is called without arguments which
is illustrated in the example below.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.enable()

If only one channel shall be enabled, the channel number (from 1 to 4) is passed to method enable.
In the next example channel 3 is enabled.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.enable(3)

Additionally, method enable can be utilized to enable several channels. In that case a set with the channel numbers is passed to the method.
In the example below channels 1 and 4 are enabled.

>>> cnt01 = CNT01('192.168.1.100')
>>> cnt01.enable({1, 4})

5. DIO01 Octal Bidirectional Digital I/O Device
The DIO01 device is a versatile and easy-to-use octal, bidirectional digital I/O module. Every of the eight channels can individually be configured as
input or output. Custom timers, counters, pulse generators, logic analyzers, functional tests or digital communication protocols like the widespread
SPI bus system can easily be implemented. Digital control loops and custom serial or parallel protocols can be realized in software and modifications
are done much more comfortable compared to equivalent hardware solutions.

5.1. Set Channel Direction
With the aid of method direction every channel can individually be configured. The following directions are supported: DIO01.DIRECTION_INPUT
(input with pull-up resistors), DIO01.DIRECTION_OUTPUT (output). Various call configurations do exist to suit the demands. If the direction of all
channels shall be changed the direction is passed to method direction. By default all eight channels are configured as input in order to protect any
attached peripheral devices.
In the following example all channels are configured as output.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.direction(DIO01.DIRECTION_OUTPUT)

If the direction of only one channel is to be changed method direction is called with two arguments: the channel number (from 1 to 8) and the direction.
In the next example channel 2 is configured as input.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.direction(2, DIO01.DIRECTION_INPUT)

siliconsystems.at9Python Programming Manual

Additionally, method direction can be utilized to configure several channels. In that case the method expects a set with the channel numbers as the
first and the direction as the second argument.
Below channels 2, 3 and 5 are configured as input.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.direction({2, 3, 5}, DIO01.DIRECTION_INPUT)

Moreover, method direction is able to configure several channels for different directions at the same time. It expects a dictionary with pairs of channel
number and direction.
In the following example channels 1, 4 and 6 are set to input, input and output respectively.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.direction({1: DIO01.DIRECTION_INPUT, 4: DIO01.DIRECTION_INPUT, 6: DIO01.DIRECTION_OUTPUT})

If a channel is switched from input to output direction, its initial logic state is low.

5.2. Read from Channels
Method read is utilized to read the logic state of one or more channels which have been configured as input with method direction. The following
logic states are possible: DIO01.STATE_LOW (logic low, False), DIO01.STATE_HIGH (logic high, True). Various call configurations do exist to suit the
demands. If the logic states of all eight channels shall be acquired, method read is called without arguments and returns a dictionary with pairs of
channel number and logic state.
This is demonstrated in the next example and the return value might be as follows.

>>> dio01 = DIO01('192.168.1.101')
>>> state = dio01.read()
>>> state
{1: 0, 2: 0, 3: 1, 4: 0, 5: 1, 6: 1, 7: 0, 8: 1}

If only the logic state of one channel is to be read out, the channel number (from 1 to 8) is passed to the method.
Channel 3 is read out as shown in the example below and the return value might be as follows.

>>> dio01 = DIO01('192.168.1.101')
>>> state = dio01.read(3)
>>> state
1

If more than one channel shall be read out, a set with the channel numbers must be passed to method read.
In the following example channels 2, 6 and 7 are sampled and the return value might be as follows.

>>> dio01 = DIO01('192.168.1.101')
>>> state = dio01.read({2, 6, 7})
>>> state
{2: 0, 6: 1, 7: 1}

5.3. Write to Channels
Method write allows to set one or more channels which have been configured as output with method direction. The following logic states are sup-
ported: DIO01.STATE_LOW (logic low, False), DIO01.STATE_HIGH (logic high, True). Various call configurations do exist to suit the demands. If the logic
state of all channels shall be changed, the logic state is passed to method write.
In the following example all channels are set to logic high.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.write(DIO01.STATE_HIGH)

If only one channel is to be updated, method write is called with two arguments: the channel number (from 1 to 8) and the logic state.
In the next example channel 2 is set to logic low.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.write(2, DIO01.STATE_LOW)

Additionally, method write can be utilized to update several channels at the same time. In that case, the method expects a set with the channel
numbers as the first and the logic state as the second argument.

siliconsystems.at10Python Programming Manual

Below channels 3, 4 and 5 are set to logic high.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.write({3, 4, 5}, DIO01.STATE_HIGH)

Moreover, method write is able to update several channels to different logic states at the same time. A dictionary with pairs of channel number and
logic state is passed to the method.
In the following example channels 5, 7 and 8 are set to logic high, logic low and logic high.

>>> dio01 = DIO01('192.168.1.101')
>>> dio01.write({5: DIO01.STATE_HIGH, 7: DIO01.STATE_LOW, 8: DIO01.STATE_HIGH})

6. DIO02 Octal Bidirectional Digital I/O Device
The DIO02 device is a versatile and easy-to-use octal, bidirectional digital I/O module. Every of the eight channels can individually be configured as
input or output. Custom timers, counters, pulse generators, logic analyzers, functional tests or digital communication protocols like the widespread
SPI bus system can easily be implemented. Digital control loops and custom serial or parallel protocols can be realized in software and modifications
are done much more comfortable compared to equivalent hardware solutions.

6.1. Set Channel Direction
With the aid of method direction every channel can individually be configured. The following directions are supported: DIO02.DIRECTION_INPUT
(input with pull-up resistors), DIO02.DIRECTION_OUTPUT (output). Various call configurations do exist to suit the demands. If the direction of all
channels shall be changed the direction is passed to method direction. By default all eight channels are configured as input in order to protect any
attached peripheral devices.
In the following example all channels are configured as output.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.direction(DIO02.DIRECTION_OUTPUT)

If the direction of only one channel is to be changed method direction is called with two arguments: the channel number (from 1 to 8) and the direction.
In the next example channel 2 is configured as input.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.direction(2, DIO02.DIRECTION_INPUT)

Additionally, method direction can be utilized to configure several channels. In that case the method expects a set with the channel numbers as the
first and the direction as the second argument.
Below channels 2, 3 and 5 are configured as input.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.direction({2, 3, 5}, DIO02.DIRECTION_INPUT)

Moreover, method direction is able to configure several channels for different directions at the same time. It expects a dictionary with pairs of channel
number and direction.
In the following example channels 1, 4 and 6 are set to input, input and output respectively.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.direction({1: DIO02.DIRECTION_INPUT, 4: DIO02.DIRECTION_INPUT, 6: DIO02.DIRECTION_OUTPUT})

If a channel is switched from input to output direction, its initial logic state is low.

6.2. Read from Channels
Method read is utilized to read the logic state of one or more channels which have been configured as input with method direction. The following
logic states are possible: DIO02.STATE_LOW (logic low, False), DIO02.STATE_HIGH (logic high, True). Various call configurations do exist to suit the
demands. If the logic states of all eight channels shall be acquired, method read is called without arguments and returns a dictionary with pairs of
channel number and logic state.
This is demonstrated in the next example and the return value might be as follows.

siliconsystems.at11Python Programming Manual

>>> dio02 = DIO02('192.168.1.109')
>>> state = dio02.read()
>>> state
{1: 0, 2: 0, 3: 1, 4: 0, 5: 1, 6: 1, 7: 0, 8: 1}

If only the logic state of one channel is to be read out, the channel number (from 1 to 8) is passed to the method.
Channel 3 is read out as shown in the example below and the return value might be as follows.

>>> dio02 = DIO02('192.168.1.109')
>>> state = dio02.read(3)
>>> state
1

If more than one channel shall be read out, a set with the channel numbers must be passed to method read.
In the following example channels 2, 6 and 7 are sampled and the return value might be as follows.

>>> dio02 = DIO02('192.168.1.109')
>>> state = dio02.read({2, 6, 7})
>>> state
{2: 0, 6: 1, 7: 1}

6.3. Write to Channels
Method write allows to set one or more channels which have been configured as output with method direction. The following logic states are sup-
ported: DIO02.STATE_LOW (logic low, False), DIO02.STATE_HIGH (logic high, True). Various call configurations do exist to suit the demands. If the logic
state of all channels shall be changed, the logic state is passed to method write.
In the following example all channels are set to logic high.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.write(DIO02.STATE_HIGH)

If only one channel is to be updated, method write is called with two arguments: the channel number (from 1 to 8) and the logic state.
In the next example channel 2 is set to logic low.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.write(2, DIO02.STATE_LOW)

Additionally, method write can be utilized to update several channels at the same time. In that case, the method expects a set with the channel
numbers as the first and the logic state as the second argument.
Below channels 3, 4 and 5 are set to logic high.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.write({3, 4, 5}, DIO02.STATE_HIGH)

Moreover, method write is able to update several channels to different logic states at the same time. A dictionary with pairs of channel number and
logic state is passed to the method.
In the following example channels 5, 7 and 8 are set to logic high, logic low and logic high.

>>> dio02 = DIO02('192.168.1.109')
>>> dio02.write({5: DIO02.STATE_HIGH, 7: DIO02.STATE_LOW, 8: DIO02.STATE_HIGH})

7. DO01 Octal Digital Output Buffer
The DO01 device is a versatile and easy-to-use octal high-current digital output module. Every of the eight channels can individually be set to logic low
or high. Depending on the voltage rating of the connected transducers, an external power supply is needed to supply them. Electro-mechanical relays,
electrical or electro-pneumatic valves, long transmission lines, digital transducers or even DC motors can directly be interfaced with the DO01 device.

7.1. Write to Channels
Method write allows to set one or more channels. The following logic states are supported: DO01.STATE_LOW (logic low, False, no voltage), DO01.
STATE_HIGH (logic high, True, supply voltage). By default the state of all eight channels is logic low in order to keep the outputs unpowered. Various
call configurations do exist to suit the demands. If the logic state of all channels shall be changed, the logic state is passed to method write.
In the following example all channels are set to logic high.

siliconsystems.at12Python Programming Manual

>>> do01 = DO01('192.168.1.102')
>>> do01.write(DO01.STATE_HIGH)

If only one channel is to be updated, method write is called with two arguments: the channel number (from 1 to 8) and the logic state.
In the next example channel 3 is set to logic low.

>>> do01 = DO01('192.168.1.102')
>>> do01.write(3, DO01.STATE_LOW)

Additionally, method write can be utilized to update several channels. In that case, the method expects a set with the channel numbers as the first
and the logic state as the second argument.
Below channels 1, 2 and 7 are set to logic high.

>>> do01 = DO01('192.168.1.102')
>>> do01.write({1, 2, 7}, DO01.STATE_HIGH)

Method write is able to update several channels to different logic states at the same time. A dictionary with pairs of channel number and logic state
is passed to the method.
In the following example channels 2, 4 and 8 are set to logic low, logic low and logic high.

>>> do01 = DO01('192.168.1.102')
>>> do01.write({2: DO01.STATE_LOW, 4: DO01.STATE_LOW, 8: DO01.STATE_HIGH})

7.2. Measure Current
The DO01 device is able to measure the current (in A) through all eight channels to provide useful feedback information. With the aid of method mea-
sure the current of one or more channels can be read out. If the currents of all eight channels shall be acquired, the method must be called without
arguments and it returns a dictionary with pairs of channel number and current.
This is demonstrated in the next example and the return value might be as follows.

>>> do01 = DO01('192.168.1.102')
>>> current = do01.measure()
>>> current
{1: 0.11986352797975819, 2: 1.4488937333706404, 3: 1.7505335022611566, 4: 1.5798000941072539, 5:
0.4301272272638017, 6: 0.2643992204559915, 7: 1.7594437810109043, 8: 1.5939713473845725}

If only the current of one channel is to be acquired, the channel number (from 1 to 8) is passed to the method.
Channel 4 is read out as shown in the example below and the return value might be as follows.

>>> do01 = DO01('192.168.1.102')
>>> current = do01.measure(4)
>>> current
1.0099062420986085

If more than one channel shall be read out, a set with the channel numbers must be passed to method measure.
In the following example channels 1, 4 and 6 are sampled and the return value might be as follows.

>>> do01 = DO01('192.168.1.102')
>>> current = do01.measure({1, 4, 6})
>>> current
{1: 1.2689130450877042, 4: 0.9713729719732345, 6: 0.6823609868143321}

8. DO02 Octal SPST Relay Module
The DO02 device is a octal easy-to-use high-voltage high-current relay module. Each channel can be enabled or disabled individually. Electrical or
electro-pneumatic valves, heaters or AC / DC motors can be controlled with the DO02 device.

8.1. Write to Channels
Method write allows to set one or more relays. The following states are supported: DO02.STATE_OPEN (open contact, False), DO02.STATE_CLOSED
(closed contact, True). By default the state of all relays is open contact in order to keep the attached components unpowered, if applicable. Various
call configurations do exist to suit the demands. If the state of all relays shall be changed, it is passed to method write.
In the following example all relays are closed.

siliconsystems.at13Python Programming Manual

>>> do02 = DO02('192.168.1.108')
>>> do02.write(DO02.STATE_CLOSED)

If only one relay is to be updated, method write is called with two arguments: the channel number (from 1 to 8) and the state.
In the next example relay 2 is opened.

>>> do02 = DO02('192.168.1.108')
>>> do02.write(2, DO02.STATE_OPEN)

Additionally, method write can be utilized to update several relays. In that case, the method expects a set with the channel numbers as the first and
the state as the second argument.
Below relays 2, 3 and 4 are closed.

>>> do02 = DO02('192.168.1.108')
>>> do02.write({2, 3, 4}, DO02.STATE_CLOSED)

Method write is able to update several relays to different states at the same time. A dictionary with pairs of channel number and state is passed to
the method.
In the following example relays 1, 2 and 7 are closed, closed and opened respectively.

>>> do02 = DO02('192.168.1.108')
>>> do02.write({1: DO02.STATE_CLOSED, 2: DO02.STATE_CLOSED, 7: DO02.STATE_OPEN})

9. TMP01 Octal Thermocouple Monitor
The TMP01 device is a versatile and easy-to-use temperature monitor. With eight inputs, it can be used with nearly any thermocouple type. The device
was designed to meet the demands of scientific or industrial applications where the high temperature range, ultra-low noise and high resolution are
important concerns.

9.1. Temperature Sensors
The class TMP01.Sensor represents a temperature sensor. When an object is created, the sensor type can be passed to the constructor. The following
sensor types are supported: TMP01.Sensor.TYPE_B, TMP01.Sensor.TYPE_C, TMP01.Sensor.TYPE_E, TMP01.Sensor.TYPE_J, TMP01.Sensor.TYPE_K,
TMP01.Sensor.TYPE_M, TMP01.Sensor.TYPE_N, TMP01.Sensor.TYPE_P, TMP01.Sensor.TYPE_R, TMP01.Sensor.TYPE_S, TMP01.Sensor.TYPE_T rep-
resenting thermocouple types B, C, E, J, K, M, N, P, R, S, T. In addition, special sensor types TMP01.Sensor.TYPE_CUSTOM (custom temperature
sensor, method measure returns the sampled voltage) and TMP01.Sensor.TYPE_NONE (no sensor) are defined.
The following example shows the creation of a thermocouple type J.

>>> sensor = TMP01.Sensor(TMP01.Sensor.TYPE_J)

If no sensor type is passed to the constructor, the sensor type is set to TMP01.Sensor.TYPE_NONE as shown in the example below.

>>> sensor = TMP01.Sensor()

The type of sensor can be read out or modified by the use of method type. If no arguments are passed to the method, it returns the sensor type.
Below the sensor type is retrieved and the return value might be as follows.

>>> sensor = TMP01.Sensor(TMP01.Sensor.TYPE_K)
>>> sensor.type()
6

If the sensor type is to be modified, the sensor type is passed to method type.
In the following example an object with thermocouple type K is created and then the sensor type is modified to a custom sensor.

>>> sensor = TMP01.Sensor(TMP01.Sensor.TYPE_K)
>>> sensor.type(TMP01.Sensor.TYPE_CUSTOM)
>>> sensor.type()
1

siliconsystems.at14Python Programming Manual

9.2. Set Sampling Frequency
The sampling frequency of the A/D converter can be set with the aid of method frequency. All eight channels are sampled one after the other at
the specified rate. The method expects one argument representing the sampling frequency. The following frequencies are supported: TMP01.FRE-
QUENCY_6, TMP01.FREQUENCY_12, TMP01.FREQUENCY_25, TMP01.FREQUENCY_50, TMP01.FREQUENCY_100, TMP01.FREQUENCY_200, TMP01.
FREQUENCY_400, TMP01.FREQUENCY_800, TMP01.FREQUENCY_1500 and TMP01.FREQUENCY_3000 representing frequencies 6, 12, 25, 50, 100,
200, 400, 800, 1500 and 3000 Hz. By default the sampling frequency is 6 Hz to ensure lowest noise suitable for most applications.
This is illustrated in the following example where the frequency is set to 100 Hz.

>>> tmp01 = TMP01('192.168.1.105')
>>> tmp01.frequency(TMP01.FREQUENCY_100)

The sampling rate should not be set higher than necessary in order to keep the measurement noise as low as possible. Please refer to the data sheet
for more details.

9.3. Measure Temperature
Method measure is utilized to read the temperature from one or more channels (in K). Various call configurations do exist to suit the demands. If all
eight channels shall be sampled, the method is be called without arguments and it returns a dictionary with pairs of channel number and temperature.
The return value of the next example might be as follows.

>>> tmp01 = TMP01('192.168.1.105')
>>> temperature = tmp01.measure()
>>> temperature
{1: 368.67038562427996, 2: 311.8024112091409, 3: 344.6008825272939, 4: 331.10072741663697, 5:
368.2362869166435, 6: 303.6834403374732, 7: 331.67740711569263, 8: 311.81128610668736}

If only one channel is to be sampled, its number (from 1 to 8) is passed to the method.
In the example below channel 3 is read out and the return value might be as follows.

>>> tmp01 = TMP01('192.168.1.105')
>>> temperature = tmp01.measure(3)
>>> temperature
311.8024112091409

If more than one channel shall be sampled, a set with the channel numbers must be passed to method measure.
In the following example channels 2, 5 and 7 are sampled and the return value might be as follows.

>>> tmp01 = TMP01('192.168.1.105')
>>> temperature = tmp01.measure({2, 5, 7})
>>> temperature
{2: 311.8024112091409, 5: 368.2362869166435, 7: 331.67740711569263}

9.4. Set Temperature Sensor
With the use of method sensor every channel can individually be configured to be used with a different type of temperature sensor. If all channels of
a device shall be utilized with the same type of sensor the sensor object (type TMP01.Sensor) is passed to method sensor. By default all channels are
disabled in order to avoid unintentional misconfiguration.
In the following example all channels are set to thermocouple type K.

>>> tmp01 = TMP01('192.168.1.105')
>>> sensor = TMP01.Sensor(TMP01.Sensor.TYPE_K)
>>> tmp01.sensor(sensor)

If one or more channels are not utilized, these channels should be configured as sensor type TMP01.Sensor.TYPE_NONE which increases the effective
sampling rate of the remaining channels. If only one channel is to be configured, method sensor is called with two arguments: the channel number
(from 1 to 8) and the sensor object.
In the next example channel 3 is configured for custom temperature sensors.

>>> tmp01 = TMP01('192.168.1.105')
>>> sensor = TMP01.Sensor(TMP01.Sensor.TYPE_CUSTOM)
>>> tmp01.sensor(3, sensor)

siliconsystems.at15Python Programming Manual

Additionally, method sensor can be utilized to configure several channels for the same sensor type. A set with the channel numbers as the first and
the sensor object as the second argument are passed to the method.
Below channels 1, 2 and 7 are disabled.

>>> tmp01 = TMP01('192.168.1.105')
>>> sensor = TMP01.Sensor(TMP01.Sensor.TYPE_NONE)
>>> tmp01.sensor({1, 2, 7}, sensor)

Moreover, method sensor is able to configure several channels to be utilized with different temperature sensors at the same time. In that case, the
method expects a dictionary with pairs of channel number and sensor object.
In the next example channels 2 and 8 are set to thermocouple type J and T respectively.

>>> tmp01 = TMP01('192.168.1.105')
>>> sensor1 = TMP01.Sensor(TMP01.Sensor.TYPE_J)
>>> sensor2 = TMP01.Sensor(TMP01.Sensor.TYPE_T)
>>> tmp01.sensor({2: sensor1, 8: sensor2})

10. TMP02 Quad RTD Monitor
The TMP02 device is a versatile and easy-to-use temperature monitor. With four inputs, it can be used with Platinum resistors, temperature diodes or
NTC thermistors. The device was designed to meet the demands of scientific or industrial applications where the high temperature range, ultra-low
noise and high resolution are important concerns.

10.1. Temperature Sensors
The class TMP02.Sensor represents a temperature sensor. When an object is created, the sensor type can be passed to the constructor. The follow-
ing sensor types are supported: TMP02.Sensor.TYPE_PT, TMP02.Sensor.TYPE_DT470, TMP02.Sensor.TYPE_DT670, TMP02.Sensor.TYPE_KTY81_1,
TMP02.Sensor.TYPE_KTY81_2, TMP02.Sensor.TYPE_KTY82_1, TMP02.Sensor.TYPE_KTY82_2, TMP02.Sensor.TYPE_KTY83_1, TMP02.Sensor.TYPE_
KTY84_1. Refer to the datasheet for additional information on the sensor types. In addition, special sensor types TMP02.Sensor.TYPE_CUSTOM
(custom temperature sensor, method measure returns the sampled voltage) and TMP02.Sensor.TYPE_NONE (no sensor) are defined.
The following example shows the creation of a KTY1-1 type (normalized resistance of 1 kΩ at 25 °C) NTC temperature sensor.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_KTY81_1)

For platinum type PTC temperature sensors, the normalized resistance (defined at 0 °C) can be passed to the constructor as the second argument. If it
is omitted, the default value of 100 Ω is used. Normalized resistances between 1 Ω and 1 kΩ are supported.
Below the creation of a PT-500 temperature sensor is illustrated.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_PT, 500)

Though for all temperature sensors, the voltage range and the excitation current can be specified, this feature is particularly useful for custom tem-
perature sensors. The following voltage ranges are supported: TMP02.Sensor.VOLTAGE_0V5 (0.5 V), TMP02.Sensor.VOLTAGE_1V (1 V), TMP02.Sensor.
VOLTAGE_2V5 (2.5 V), TMP02.Sensor.VOLTAGE_5V (5 V), TMP02.Sensor.VOLTAGE_DEFAULT (default voltage range, sensor type dependant). These
excitation currents can be selected: TMP02.Sensor.CURRENT_10UA (10 µA), TMP02.Sensor.CURRENT_1MA (1 mA), TMP02.Sensor.CURRENT_DE-
FAULT (default excitation current, sensor type dependant). In addition to the sensor type, the voltage range and the excitation current can be passed
to the constructor.
In the following example the low temperature diode DT-670 with the voltage range of 2.5 V and the excitation current of 10 µA is created.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_DT670, TMP02.Sensor.VOLTAGE_2V5, TMP02.Sensor.CURRENT_10UA)

The type of sensor can be read out or modified by the use of method type. If no arguments are passed to the method, it returns the sensor type.
Below the sensor type is retrieved and the return value might be as follows.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_KTY81_1)
>>> sensor.type()
5

If the sensor type is to be modified, the sensor type is passed to method type.
In the following example a PT-500 temperature sensor is created and then the sensor type is modified to a custom sensor. The return value might be
as follows.

siliconsystems.at16Python Programming Manual

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_PT)
>>> sensor.type(TMP02.Sensor.TYPE_CUSTOM)
>>> sensor.type()
1

If the normalized resistance of the sensor shall be read out or modified, method resistance is used. If no arguments are passed to the method, it returns
the normalized resistance.
Below the normalized resistance of a PT temperature sensor is retrieved.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_PT)
>>> sensor.resistance()
100.0

If the normalized resistance is to be modified, the normalized resistance is passed to method resistance.
In the following example a PT-100 temperature sensor is created and then the normalized resistance is changed to 500 Ω.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_PT)
>>> sensor.resistance(500)

With method voltage, the voltage range can be retrieved or modified. If no arguments are passed to the method, the voltage range is returned.
The following example shows how to retrieve the voltage range.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_DT670, TMP02.Sensor.VOLTAGE_2V5, TMP02.Sensor.CURRENT_10UA)
>>> sensor.voltage()
2.5

In order to modify the voltage range, it is passed to method voltage.
In the following example the 1.0 V voltage range is selected.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_PT)
>>> sensor.voltage(TMP02.Sensor.VOLTAGE_1V)

It is also possible to read out or to modify the excitation current. This can be accomplished with method current. If the method is called without argu-
ments, it returns the excitation current.
The example below shows how to read out the excitation current.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_DT470, TMP02.Sensor.VOLTAGE_5V, TMP02.Sensor.CURRENT_10UA)
>>> sensor.current()
1e-05

In the following example the excitation current is reset to default.

>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_DT470, TMP02.Sensor.VOLTAGE_5V, TMP02.Sensor.CURRENT_10UA)
>>> sensor.current(TMP02.Sensor.CURRENT_DEFAULT)

10.2. Set Sampling Frequency
The sampling frequency of the A/D converter can be set with the aid of method frequency. All eight channels are sampled one after the other at
the specified rate. The method expects one argument representing the sampling frequency. The following frequencies are supported: TMP02.FRE-
QUENCY_6, TMP02.FREQUENCY_12, TMP02.FREQUENCY_25, TMP02.FREQUENCY_50, TMP02.FREQUENCY_100, TMP02.FREQUENCY_200, TMP02.
FREQUENCY_400, TMP02.FREQUENCY_800, TMP02.FREQUENCY_1500 and TMP02.FREQUENCY_3000 representing frequencies 6, 12, 25, 50, 100,
200, 400, 800, 1500 and 3000 Hz. By default the sampling frequency is 6 Hz to ensure lowest noise suitable for most applications.
This is illustrated in the following example where the frequency is set to 50 Hz.

>>> tmp02 = TMP02('192.168.1.106')
>>> tmp02.frequency(TMP02.FREQUENCY_50)

The sampling rate should not be set higher than necessary in order to keep the measurement noise as low as possible. Please refer to the data sheet
for more details.

siliconsystems.at17Python Programming Manual

10.3. Measure Temperature
Method measure is utilized to read the temperature from one or more channels (in K). Various call configurations do exist to suit the demands. If all
eight channels shall be sampled, the method is be called without arguments and it returns a dictionary with pairs of channel number and temperature.
The return value of the next example might be as follows.

>>> tmp02 = TMP02('192.168.1.106')
>>> temperature = tmp02.measure()
>>> temperature
{1: 368.67038562427996, 2: 311.8024112091409, 3: 344.6008825272939, 4: 331.10072741663697}

If only one channel is to be sampled, its number (from 1 to 4) is passed to the method.
In the example below channel 3 is read out and the return value might be as follows.

>>> tmp02 = TMP02('192.168.1.106')
>>> temperature = tmp02.measure(3)
>>> temperature
311.8024112091409

If more than one channel shall be sampled, a set with the channel numbers must be passed to method measure.
In the following example channels 1, 3 and 4 are sampled and the return value might be as follows.

>>> tmp02 = TMP02('192.168.1.105')
>>> temperature = tmp02.measure({1, 3, 4})
>>> temperature
{1: 311.8024112091409, 3: 368.2362869166435, 4: 331.67740711569263}

10.4. Set Temperature Sensor
With the use of method sensor every channel can individually be configured to be used with a different type of temperature sensor. If all channels of
a device shall be utilized with the same type of sensor the sensor object (type TMP02.Sensor) is passed to method sensor. By default all channels are
disabled in order to avoid unintentional misconfiguration.
In the following example all channels are set to PT-100 temperature sensor.

>>> tmp02 = TMP02('192.168.1.106')
>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_PT)
>>> tmp02.sensor(sensor)

If one or more channels are not utilized, these channels should be configured as sensor type TMP02.Sensor.TYPE_NONE which increases the effective
sampling rate of the remaining channels. If only one channel is to be configured, method sensor is called with two arguments: the channel number
(from 1 to 4) and the sensor object.
In the next example channel 3 is configured for custom temperature sensors.

>>> tmp02 = TMP02('192.168.1.106')
>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_CUSTOM)
>>> tmp02.sensor(3, sensor)

Additionally, method sensor can be utilized to configure several channels for the same sensor type. A set with the channel numbers as the first and
the sensor object as the second argument are passed to the method.
Below channels 1, 2 and 4 are disabled.

>>> tmp02 = TMP02('192.168.1.106')
>>> sensor = TMP02.Sensor(TMP02.Sensor.TYPE_NONE)
>>> tmp02.sensor({1, 2, 4}, sensor)

Moreover, method sensor is able to configure several channels to be utilized with different temperature sensors at the same time. In that case, the
method expects a dictionary with pairs of channel number and sensor object.
In the next example channels 2 and 3 are set to low temperature diode DT-470 and PT-100 temperature sensor respectively.

>>> tmp02 = TMP02('192.168.1.106')
>>> sensor1 = TMP02.Sensor(TMP02.Sensor.TYPE_DT470)
>>> sensor2 = TMP02.Sensor(TMP02.Sensor.TYPE_PT)
>>> tmp02.sensor({2: sensor1, 3: sensor2})

siliconsystems.at18Python Programming Manual

11. VI01 Octal Voltage Monitor
The VI01 device is a versatile and easy-to-use voltage monitor. With eight inputs, it can be used with any industrial transducer with the voltage output
ranging from -10 V to +10 V. The ultra-low noise, the high resolution and the outstanding accuracy make it ideal for industrial applications as well as for
scientific experiments. The channels are multiplexed, amplified, conditioned and sampled by the high-performance 24-Bit delta-sigma A/D converter.

11.1. Set Sampling Frequency
The sampling frequency of the A/D converter can be set with the aid of method frequency. All eight channels are sampled one after the other at the
specified rate. The method expects one argument representing the sampling frequency. Valid values are VI01.FREQUENCY_6, VI01.FREQUENCY_12,
VI01.FREQUENCY_25, VI01.FREQUENCY_50, VI01.FREQUENCY_100, VI01.FREQUENCY_200, VI01.FREQUENCY_400, VI01.FREQUENCY_800, VI01.
FREQUENCY_1500 and VI01.FREQUENCY_3000 representing frequencies 6, 12, 25, 50, 100, 200, 400, 800, 1500 and 3000 Hz. By default the sampling
frequency is 6 Hz to ensure lowest noise suitable for most applications.
This is illustrated in the following example where the frequency is set to 400 Hz.

>>> vi01 = VI01('192.168.1.107')
>>> vi01.frequency(VI01.FREQUENCY_400)

The sampling rate should not be set higher than necessary in order to keep the measurement noise as low as possible. Please refer to the data sheet
for more details.

11.2. Measure Voltage
Method measure is utilized to acquire one or more samples from one or more channels (in V). Various call configurations do exist to suit the demands.
If a single sample of all eight channels shall be acquired the method is called without arguments and returns a dictionary with pairs of channel number
and voltage.
This is illustrated below and the return value might be as follows.

>>> vi01 = VI01('192.168.1.107')
>>> voltage = vi01.measure()
>>> voltage
{1: -0.5972805455760266, 2: 8.774007583078888, 3: 8.218679151958344, 4: 2.57064558783547, 5:
9.866371435779875, 6: 2.343150916541159, 7: 0.4396105026580983, 8: -1.5683471211771138}

If only one channel is to be sampled, its number (from 1 to 8) is passed to the method.
In the following example channel 6 is sampled and the return value might be as follows.

>>> vi01 = VI01('192.168.1.107')
>>> voltage = vi01.measure(6)
>>> voltage
5.047992680958544

If more than one channel shall be sampled a set with the channel numbers must be passed to method measure. A dictionary with pairs of channel
number and voltage is returned.
In the following example channels 2, 4 and 7 are sampled and the return value might be as follows.

>>> vi01 = VI01('192.168.1.107')
>>> voltage = vi01.measure({2, 4, 7})
>>> voltage
{2: -5.907751008404361, 4: 3.4847245555623534, 7: -4.683837645655773}

If more than one samples shall be acquired from one channel the method expects three arguments: the channel number, the number of samples (from
1 to 106) and the sampling frequency (from 6 Hz to the sampling frequency configured with method frequency). A list of samples is returned.
In the next example at first the sampling frequency is set to 800 Hz and after that 10 samples from channel 3 are acquired at 800 Hz. The return value
might be as follows.

>>> vi01 = VI01('192.168.1.107')
>>> vi01.frequency(VI01.FREQUENCY_800)
>>> voltage = vi01.measure(3, 10, 800)
>>> voltage
[5.0035584878000074, 5.000416991002845, 5.0015453843932365, 5.0098226782852855, 5.003863160195338,
5.001879859132699, 5.002806026165695, 5.006832483742139, 5.008882836260877, 5.008555696721807]

siliconsystems.at19Python Programming Manual

Moreover the acquisition of several samples from several channels is possible. The expected arguments are similar to the previous call configuration:
a set with the channel numbers, the number of samples (from 1 to 106) and the sampling frequency (from 6 Hz to the sampling frequency configured
with method frequency). A list of dictionaries with pairs of channel number and voltage is returned.
In the next example the sampling frequency is set to 200 Hz and 7 samples from channels 2 and 3 are acquired at 190 Hz. The return value might be
as follows.

>>> vi01 = VI01('192.168.1.107')
>>> vi01.frequency(VI01.FREQUENCY_200)
>>> voltage = vi01.measure({2, 3}, 7, 190)
>>> voltage
[{2: 5.001426978746452, 3: 3.0095688390916457}, {2: 5.001228846480992, 3: 3.0032225176017415},
{2: 5.00257503349055, 3: 3.005348418826106}, {2: 5.0022511677552925, 3: 3.0036813740799135}, {2:
5.002188428721803, 3: 3.0073717744516446}, {2: 5.007661141962965, 3: 3.007279341761345}, {2:
5.00026614454084, 3: 3.0062490408303058}]

Indexing the list and the containing dictionaries is used to gather a specific sample. Note that indexing of lists is zero-based.
The example below shows how to retrieve sample 4 of channel 2 (compare to previous example).

>>> voltage[4 - 1][3]
5.0022511677552925

11.3. Stop Measurement
If method measure shall be terminated, method stop can be called, which is typically done from another thread or different computer.
The method does not expect any arguments and is utilized as demonstrated below.

>>> vi01 = VI01('192.168.1.107')
>>> vi01.stop()

12. VO01 Octal Voltage Output Device
The VO01 device is a versatile and easy-to-use voltage output device. With eight outputs, it can be used with any analog industrial interface with
voltage input ranging from -10 V to +10 V. The ultra-low noise, the high resolution and the outstanding accuracy make it ideal for industrial applications
as well as for scientific experiments.

12.1. Control the Output Voltage
In order to control the output voltage of one or more channels the method control is utilized. If all eight channels of a device shall be modified the
new voltage (from -10 V to +10 V) is passed to the method control. By default all channels are set to 0 V to protect any attached peripheral devices.
In the following example all channels are set to +3.2 V.

>>> vo01 = VO01('192.168.1.104')
>>> vo01.control(3.2)

If only one channel is to be modified method control is called with two arguments: the channel number (from 1 to 8) and the voltage (from -10 V to
+10 V).
In the next example channel 3 is set to -2.4 V.

>>> vo01 = VO01('192.168.1.104')
>>> vo01.control(3, -2.4)

Additionally, method control can be utilized to set several channels to a common voltage. In that case, the method expects a set with the channel
numbers as the first and the voltage as the second argument.
Below channels 1, 2 and 7 are set to +6.8 V.

>>> vo01 = VO01('192.168.1.104')
>>> vo01.control({1, 2, 7}, 6.8)

Moreover, method control is able to change the voltages of several channels to different values at the same time. In this case, the method expects a
dictionary with pais of channel number and voltage.
In the following example channels 2, 4 and 8 are set to +2.1 V, -5.3 V and +8.1 V respectively.

siliconsystems.at20Python Programming Manual

>>> vo01 = VO01('192.168.1.104')
>>> vo01.control({2: 2.1, 4: -5.3, 8: 8.1})

13. Exception Handling
If one of methods described in that document could not be executed properly an exception is thrown which shall be caught by the caller of the method.
The reason of the exception can be deduced from the caught object. Please refer to the Python programming reference for more information on excep-
tion handling techniques.
The following exceptions are derived from class Error: Error.Aborted (raised when e.g. a measurement requests are interrupted), Error.Configuration
(raised when the device is not properly configured, e.g. when an unconfigured channel shall be read out), Error.Failed (raised when a request failed
due to an unknown reason), Error.Internal (raised when an internal unhandled exception occurs), Error.Network (raised when a communication problem
occurred), Error.NotFound (raised when method Device.find could not find one or more devices), Error.Parameter (raised when a passed parameter
is invalid or out of range), Error.Reserved (raised when e.g. a measurement request is pending), Error.Timeout (raised when no response has been
received from a device).
In the following example the voltage of channel 9 of device VI01 shall be measured, but only eight channels are available. This causes an Error.Param-
eter exception. If no try/except blocks are utilized, the output might be as follows.

>>> vi01 = VI01('192.168.0.1')
>>> voltage = vi01.measure(9)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "d:\siliconsystems\VI01.py", line 93, in measure
 self._error(error)
 File "d:\siliconsystems\Device.py", line 425, in _error
 raise Device._error_[error]
siliconsystems.Error.Parameter: One or more parameters are out of range or invalid. Check the validity of
all parameters.

In the following example the operation is attempted within a try/except block. The error message is printed and might be as follows.

>>> try:
... vi01 = VI01('192.168.0.1')
... vi01.measure(9)
... except Error.Error as error:
... print(error)
...
One or more parameters are out of range or invalid. Check the validity of all parameters.

Moreover, it is possible to handle specific exceptions.
The following example shows how to specifically handle any network related errors. Other errors are commonly caught.

>>> try:
... vi01 = VI01('192.168.0.1')
... vi01.measure(1)
... except Error.Network as error:
... print(error)
... except Error.Error as error:
... print(error)

In order to investigate a raised exception, library traceback can be utilized. Below the call stack is printed when an Error.Timeout exception occurs.

Status: April 2022

